Sterling Power Products PDARRC Benutzerhandbuch

Seite 14

Advertising
background image

Fault on panel
High alternator voltage trip.

:

All lights flashing.

Once all these lights flash what has happened is the alternator voltage sensed via the brown wire on the D+ has
exceeded 17.5 volts ( x 2 for 24 v ) . and the advanced reg has disconnected itself.
Remember that when any red warning lights come on the sterling unit, the sterling has 100% disconnected itself
( it has a built in relay connected to the white wire ). So the most important thing to check here is that when this
alarm comes on, is whether or not the system reverts back to its own standard voltage ( or in the event of its
own regulator not being used the alternator should cease functioning ). This is the most important thing to
establish, because if the alarm lights on and the Advanced reg has disconnected itself , then the standard system
should automatically take over and automatically drop the charger voltage back to the standard voltage setting (
about 14 v at the alternator ), if this does not happen and the voltage continues to rise then the standard alternator
system is at fault.
There are a number of reasons for the high alternator trip activating, and it falls into 2 main headings:

1) due to the incorrect handling of the standard regulator when installing the field cables to fit the sterling
alternator the standard regulator has failed closed, The only solution for this is to replace the standard regulator
2)the solder you put onto the brush to connect the field wire to has touch the alternator case and caused the
field to go to earth ( on neg field control only ) , or the cable you connected has been nipped to the alt case when
bringing the cable outside the alternator . To test for this, using a volt meter, turn the meter to ohms test ( so that
when the 2 x terminals are jointed the meter beeps ) test the wire you connected to the neg of the case, there
should be no beep, if a beep is herd, then investigate why this is going down to neg.
3) the red sense wire has been connect in the wrong place disconnected. this means the red wire is open
circuited.
4 )the unit works o.k. For a short period of time then if you increase the r.p.m. Of the engine it trips out.
The most common thing that would cause this is if the cable between the alternator and the batteries being either
to long for the current or to thin for the length. The first question i always ask is what is the cable distance
between the alternator and the batteries, and the first answer is usually about 1.5 meters as the batteries are beside
the engine ( this of course i don't believe, so my next question is,) Do you have a amp meter on the dash , and i
usually get yes, then my second question, is Now sir, taking into account that you have a amp meter on the dash,
and the fact that the alternator cable will go via that, what is the cable length between the alternator and the
batteries via the amp meter and the split charge diode , all of a sudden the 1.5. Meter run ( which was no
problem ) becomes a 5 meter run, carrying 60 amps, which now becomes a problem.
The important thing to remember here is that voltage drop faults manifested themselves in heat ( this is why the
advanced regulator has this safety system built into it, because failure to detect this fault could easily result in a
fire in your loom. So with this in mind then the correct way for a knowledgeably electrication is to check the
voltage drop across the positive line, how the easy way to find this fault is to do the following:
Expose the dash so you can easily get to the amp meter, ( or where ever it is ) , expose the split diode or relay or
rotary switch ( where ever it may be ) expose the alternator , and expose the battery terminalis. Now then simply
switch on the engine, run the engine at as high a r.p.m. As possible ( without the trip coming on, if the trip comes
on then restart the engine and bring the r.p.m. up to below the last time , remember if the trip comes on the test is
a waste of time ) for about 5 mins. Then stop the engine and carefully do the following ( remember the fault will
show itself as heat.)
1) feel the alternator cable, if very warm. Solution: double its thickness, ie run another cable the same
thickness along with the one alright there. or run a new much thicker cable, a rough guide is that for every 2
meters of cable run you need to double the size of the cable.
2) touch all the connectors on the cable, ie the connection on the back of the alt, and any other joins, if hot .
Solution: re make the connections.
3) touch the back of the amp meter, check the connections and also the rating of the amp meter to ensure it is
within the rating of the alternator , if it is very hot Solution: replace the amp meter with a shunt type ( see the
sterling power management panel ) and reduce the cable length

Because we can assume certain things like the cable size is o.k. and the cable runs are not to long ( however it is
worth doing the above test incase cables have become lose in crimp connectors or the cable has frayed and in
effect reduced its cross section of copper. ) we can check for other problems.
1) with the engine running, check the voltage coming out of the alternator

A new installation where the advanced regulator has just been installed and so far has not worked correctly

A older installation where the system has been working correctly

( before the alarm goes on, any tests

Fault on panel:

Red high battery voltage trip light on

This trip has been activated because the battery voltage ( at the end of the red sense wire ) has exceeded 15.5
volts ( x 2 for 24 volts ). the max charge voltage from the advanced reg is 14.8 volts, therefore it is not possible
for this trip to be activated under normal circumstances.
There are only 3 possibilities for this trip to come on :
1) the sterling advanced regulator has failed closed and has started to over charger the batteries
2) the standard alternator regulator has failed closed and gone to over charger the batteries
3) the red sense wire has been disconnected

How to determine which, and what to do about it
Put a volt meter on the domestic battery, ( or where ever the red sterling sense wire goes to ), start the engin up,
watch the battery voltage climb up and up, once it gets to 15.5 volts and the unit trips, if the voltage continues to
climb then the standard alternator regulator has failed and there is nothing we can do about this except warn you.
This is the worst and most dangerous fault you can get on a alternator system, and the alternator must be fixed as
soon as possible, if a long journey must be undertaken then remove the b+ ( positive cable ) from the back of the
alternator, and get to port and repair the problem . Failure to fix this problem will result in the total loss of the
batteries and other equipment on the boat and a possible fire as well.
If however after the voltage reaches 15.5 volts and the advanced reg warning light comes on and the voltage
drops away down to 13-14 volts, then the sterling advanced regulator is 100% at fault and must be replaced or
repaired. For emergency use only it is o.k. to motor to port with this condition as the Sterling regulator has
automatically switched itself off

Fault on panel:

Red High battery voltage light flashing

High battery temp trip
This has been activated because the thermal sensor provided with the advanced regulator has picked up a
temperature in excess of 50 degc. There are a few very obviouse reasons fr this and a few subtle. The important
thing to find out is where the temperature sensor is, and to expose where it is.
1) the most obvious fault is the fact that the batteries are actually very hot, ie 50 def c is just about to hot to
touch, if this is the case the batteries will be on there way to boiling and are certainly in a major failure event . if
this is the case then switch off the engine and find out why.
If all the batteries are presenting the same heat then you are overcharging the batteries, or are simply in a very hot
environment where the batteries should not be. If however only 1 battery is hot and the rest are cooler then it is
simply a scrap battery, take it out of circuit and replace it.
2) the temperature sensor should be connected to the lead post at the top of a battery, in the event of the
terminals becoming lose, or a high current is being passed then it is possible for the battery terminal to over heat
and set of the alarm, when in fact the batteries are o.k. . this should be very obvious, feel the temp of the post
where the thermal sensor is, and feel the batteries, if the post is hot and the battery is cold the fix the bad
connections in your battery terminal.

Helpful hints to find the Faults

indicated by the l.e.d.s

done after the alarm has gone off are pointless )

, the voltage at the domestic battery and the voltage at the engine

battery . if you get results on a split diode system like, alt volts 16 volts, eng batt 15 volts , domestic battery 12
volts, then the domestic battery is not connected to the alternator, the most likley cause of this is failure of the
split charger diode, or failure of the split charger relay. check the relay or diode .
For a split charger relay, go to the 2 x main connectors on the relay, and ensure that the voltage into the relay is
the same as the voltage coming out, if there is a difference of more that 0.2 volts then the relay is not working.
Solution replace the relay .
With a split charger diode, check the input voltage of the diode and the out put voltage to the domestic battery,
there should be a voltage drop of between 0.6 and 1.2 volts, if however there is more than this the diode has
failed, Solution :replace the diode.

Advertising
Dieses Handbuch ist für die folgenden Produkte bezogen werden: