Casio fx-3650P Benutzerhandbuch
Seite 34

G-32
u Korrelationskoeffizient
r
u Regressionskoeffizient A
A = exp
(
)
n
Σ
ln
y – B.
Σx
u Regressionskoeffizient B
B =
n.
Σx
2
–
(
Σx
)
2
n.
Σx
ln
y –
Σx.Σ
ln
y
r
=
{
n.
Σx
2
–
(
Σx
)
2
}{
n.
Σ
(ln
y
)
2
–
(
Σ
ln
y
)
2
}
n.
Σx
ln
y –
Σx.Σ
ln
y
u Korrelationskoeffizient
r
u Regressionskoeffizient A
A = exp
(
)
n
Σ
ln
y – B.
Σ
ln
x
u Regressionskoeffizient B
B =
n.
Σ
(ln
x
)
2
–
(
Σ
ln
x
)
2
n.
Σ
ln
x
ln
y –
Σ
ln
x.
Σ
ln
y
r
=
{
n.
Σ
(ln
x
)
2
–
(
Σ
ln
x
)
2
}{
n.
Σ
(ln
y
)
2
–
(
Σ
ln
y
)
2
}
n.
Σ
ln
x
ln
y –
Σ
ln
x.
Σ
ln
y
u Korrelationskoeffizient
r
u Regressionskoeffizient A
A =
n
Σy – B.Σx
u Regressionskoeffizient B
B =
n.
Σx
2
–
(
Σx
)
2
n.
Σxy – Σx.Σy
r
=
{
n.
Σx
2
–
(
Σx
)
2
}{
n.
Σy
2
–
(
Σy
)
2
}
n.
Σxy – Σx.Σy
u Korrelationskoeffizient
r
u Regressionskoeffizient A
A =
n
Σy – B.Σ
ln
x
u Regressionskoeffizient B
B =
n.
Σ
(ln
x
)
2
–
(
Σ
ln
x
)
2
n.
Σ
(ln
x
)
y –
Σ
ln
x.
Σy
r
=
{
n.
Σ
(ln
x
)
2
–
(
Σ
ln
x
)
2
}{
n.
Σy
2
–
(
Σy
)
2
}
n.
Σ
(ln
x
)
y –
Σ
ln
x.
Σy
2 Logarithmische Regression
y
= A + B.
ln x
1 Lineare Regression
y
= A + B
x
3 Exponenzielle Regrssion
y
= A.
e
B
·
x
(ln
y
=
ln
A + B
x
)
4 Potenzregression
y
= A.
x
B
(ln
y
=
ln
A + B ln
x
)