Manual cohedra, Cohedra, Compact 1 line array ansätze der vergangenen jahre – HK Audio CDR 210 F Benutzerhandbuch

Seite 6

Advertising
background image

Manual

COHEDRA

®

& COHEDRA

®

Compact

1 Line Array Ansätze der

vergangenen Jahre

Aus der heutigen Beschallungsszene sind Line
Arrays inzwischen nicht mehr wegzudenken. Der
Ursprung dieses Konstruktionsprinzips liegt in den
Lautsprecherzeilen aus Konuslautsprechern, die in
den 1970er Jahren populär waren.
Die Ausdehnung der kohärenten Wellenfront bis in
den Hochtonbereich durch Wellenleiter oder auch
Akustikspiegel ließ gut 20 Jahre später eine zweite
Generation von Line Arrays entstehen.

Dabei wird die Ausbreitung eines Nahfeldes vor
einer Linienquelle genutzt. Dieses Nahfeld der
abgestrahlten Zylinderwellenfront verformt sich in
einem gewissen Abstand zu einer sphärischen Wel-
lenfront. Dieser Übergang von einer Zylinder- zu
einer sphärischen Welle ist dabei abhängig von der
Länge des Strahlers, wie auch von der abgestrahl-
ten Frequenz. Zur Berechnung des Grenzabstandes
in dem diese Verformung vollzogen wird, dient z.B.
die folgende Formel von Christian Heil:

H in Metern, f in kHz

Mark Ureda stellt hingegen für die Berechnung des
Abstandes zwischen Nah- und Fernfeld eine etwas
andere Formel auf:

l in Metern, f in Hz

Trägt man nun beide Formeln graphisch gegenein-
ander auf, so läßt sich allerdings feststellen, dass
die Formeln im Ergebnis recht ähnlich sind.

Allgemein scheinen die Aspekte moderner Line Arrays
genügend beschrieben, jedoch stellt man in der
Praxis einige Unzulänglichkeiten fest.

So würde sich nach den oben genannten Formeln
bei einem Line Array mit der Länge von 4 m und
bei einer Frequenz von 16 kHz das Nahfeld bis zu
380 m erstrecken! Jeder der schon einmal ein Line
Array ähnlicher Größe gehört hat, wird bestätigen,
daß diese hohen Reichweiten in der Realität kei-
nesfalls zu erreichen sind, vielmehr müssen diese
Werte dras tisch reduziert werden.(vgl. Abb. 1)
Somit besitzen die oben genannten Formeln für
eine kontinuierliche Linienquelle mehr einen
theoretischen Charakter.

Woher kommen aber nun diese Unterschiede
zwischen Theorie und Praxis und warum findet
überhaupt eine Verformung zu einer sphärischen
Wellenfront statt und nicht eine endlose Fort-
pflanzung in einer Zylinderwelle?

Die Antwort ist recht einfach wenn man die Luft in
ihrer molekularen Struktur betrachtet. Dort wird ja
die Ausbreitung der Schallwelle durch den Reibungs-
widerstand der Luftmoleküle behindert.
In den Randbereichen driften nun einige Mole-
küle nach außen, wenn dort ruhende Moleküle
ange stoßen werden. Mathematisch kann dies
als Schallvektor beschrieben werden, der in den
Randbereichen nun leicht nach außen zeigt. Da
die Ausbreitungsgeschwindigkeit konstant bleibt
formt sich so langsam aus der Zylinderwelle eine
sphärische Welle.
Der molekulare Reibungswiderstand der Luft wird
in der Literatur mit der Luftschallabsoption be-
schrieben, die jedoch mit steigender Frequenz
exponentiell zunimmt. Demnach ist der Reibungs-
widerstand bei höheren Frequenzen größer, somit
erfolgt bei höheren Frequenzen die oben beschrie-
bene Verformung bereits in einem geringerem
Abstand.
Ähnliche Effekte sind auch aus der Analogtechnik
bekannt, wo ein Rechtecksignal durch einen Tief-
passfilter „verschliffen“ wird. Ab einem gewissen
Grad kann man dann wieder von einem sinusähn-
lichem Signal sprechen.

Die theoretisch möglichen Werte werden in der
Praxis nochmals herabgesetzt, da die Linienquelle
im Hochtonbereich nicht wirklich kontinuierlich
ist, sondern aus einzelnen Segmenten zusam-
mengesetzt wird. Dabei ist es selbst mit größtem
Aufwand nicht möglich Unterbrechungen bzw.
Störungen der kontinuierlichen Linienquelle zu
verhindern, die zwangsläufig durch Gehäuse und
Kantenbeugungseffekte auftreten.
Zudem wäre diese theoretische kontinuierliche
Linienquelle immer gerade! Sobald hier nur ein
leichtes Curving eingefügt wird, entstehen Spalte in
der Luft, welche die Linienquelle auseinanderreißt
und damit zusätzlich die Reichweite herabsetzt.
Um dieses Phänomen der durch Curving entste-
henden Spalte zu verhindern müsste ein Line Array
aus sehr, sehr vielen Einzelelementen bestehen
N => ∞ was sich praktisch leider nicht verwirkli-
chen lässt. (vgl. Abb. 2a, 2b)

Die Berücksichtigung dieser Unzulänglichkeiten
führte zur nächsten Generation von Line Arrays,
die nun betrachtet werden soll.

Abb. 1: Vergleich des Überganges zwischen Nah- und

Fernfeld in Theorie und Praxis für ein 4m langes Array.

Abb. 2a: Kontinuierliche Linienquelle

Abb. 2b: Durch Curving entstandener Spalt

Kapitel A - s. 2

Advertising
Dieses Handbuch ist für die folgenden Produkte bezogen werden: